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Abstract

The flexural behaviour of a composite beam (e.g. a reinforced concrete beam) with multiple reinforcements under
cyclic loading is analysed through a fracture mechanics-based theoretical model which considers a cracked beam
subjected to an external bending moment and the crack bridging reactions due to the reinforcements. Assuming a rigid-
perfectly plastic bridging law for the reinforcements and a linear-elastic law for the matrix, the statically indeterminate
bridging forces are obtained from compatibility conditions. Typical phenomena, such as elastic shake-down and plastic
shake-down, in the composite beam under cyclic bending are described in terms of applied bending moment against
beam cross-section rotation. Further, by employing a fatigue crack growth law (e.g. the Paris law), the mechanical
behaviour of the examined beam up to failure can be captured. Some numerical examples to illustrate the capabilities of
the proposed theoretical model are presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many composite materials used in different engineering applications consist of a brittle matrix and
ductile reinforcements (e.g. bars, wires, fibers). By incorporating such reinforcements into the matrix,
several mechanical properties are enhanced, including: cracking resistance, ductility, impact resistance,
fatigue strength. In the field of civil engineering, for instance, fiber-reinforced cementitious composites are
employed in an increasing amount of structures (e.g. airport pavements, highway overlays, bridge decks,
machine foundations, shear walls) which are subjected to repeated loadings during their service life. Such
loadings are characterized by a number of cycles ranging from few hundreds (as for shear walls under
seismic loading) to hundreds of millions (as for foundations supporting dynamic machines).
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Nomenclature

a crack depth

b height of the beam cross-section

¢ position of the ith reinforcement with respect to the bottom of the beam cross-section
E Young modulus of the matrix

fe compressive strength of the matrix

F bridging force (reaction) of the ith reinforcement

Fp; ultimate force (reaction) of the ith reinforcement

K; stress intensity factor

K;c critical stress intensity factor (fracture toughness)

M bending moment

Mg bending moment of either unstable fracture or crushing of the matrix

My.x  maximum bending moment
My, — minimum bending moment

Mp plastic bending moment

Msp shake-down bending moment

n number of reinforcements intersected by the crack

N number of loading cycles

Ny number of loading cycles to failure

Np brittleness number

t thickness of the beam cross-section

w; crack opening translation at the ith reinforcement level

p* load factor related to the load step &

{; = ¢;/b relative position of the ith reinforcement with respect to the bottom of the beam cross-section

ij localised compliance related to the crack opening translation at the ith reinforcement level due
to a unit crack opening force F; = 1 acting at {;

Aim localised compliance related to the crack opening translation at the ith reinforcement level due

to a unit bending moment M = 1
v rotational localised compliance due to a unit bending moment M = 1
& =a/b relative crack depth

Oc compressive stress in the matrix

10) rotation of the cracked beam cross-section

Subscripts

0 referring to the preceding load reversal

i referring to the ith reinforcement intersected by the crack, withi=1,...,n
i referring to the jth reinforcement intersected by the crack, with j=1,... n
Superscripts

referring to a dimensionless (normalised) parameter
(k) referring to the load step &

(N) referring to the Nth loading cycle, with N =1,... N,
Other symbols are defined as they appear in the text.
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Cracks might develop in structures of reinforced brittle-matrix composite materials, so that the overall
mechanical behaviour would strongly be affected by the crack bridging reactions of the reinforcements.
Moreover, the progressive crack growth under cyclic loading influences the bridging behaviour, and causes
significant changes in the mechanical properties of the above materials (strength, toughness, stiffness,
hysteretic behaviour, etc.), eventually leading to failure. A number of theoretical models have been pro-
posed to describe such phenomena and to predict fatigue life (for instance, see recent models for fiber-
reinforced concrete structural components subjected to cyclic bending, discussed in Zhang and Stang
(1998), Zhang et al. (1999) and Matsumoto and Li (1999)).

In the present paper, a fracture mechanics-based model is proposed to analyse the flexural behaviour of a
composite beam with multiple reinforcements under cyclic loading. Such a model considers a cracked
portion of a beam subjected to an external bending moment and the crack bridging reactions due to the
reinforcements (Fig. 1). Assuming a rigid-perfectly plastic bridging law for the reinforcements and a linear-
elastic law for the matrix, the statically indeterminate bridging forces are obtained from compatibility
conditions related to the crack opening translations at the levels of the reinforcements. Typical phenomena,
such as elastic shake-down and plastic shake-down, are described in terms of applied bending moment
against beam cross-section rotation. Finally, the flexural behaviour of the composite beam up to failure is
captured by applying the well-known Paris fatigue crack growth law, and some numerical examples to
illustrate the capabilities of the present theoretical model are discussed.

The model here proposed originates from previous formulations for monotonic loading applied to
beams with either a single reinforcement (Carpinteri Al, 1984) or multiple reinforcements (Carpinteri Al
and Massabo, 1996, 1997), while only the cases of either a single reinforcement (Carpinteri Al and
Carpinteri An, 1984; Carpinteri An, 1991; Carpinteri An, 1992) or two reinforcements (Carpinteri Al and
Puzzi, 2003) have so far been analysed for cyclic loading. Note that, in the aforementioned works, the
compatibility conditions considered for determining the statically indeterminate reinforcement reactions
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Fig. 1. (a) Schematic of the model; (b) crack profile for elastic reinforcements; (c) crack profile for yielded or slipped reinforcements.
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are related to the rotation of the cracked beam cross-section in the case of a single reinforcement, and to
crack opening translations in the case of multiple reinforcements.

2. Description of the model
2.1. Model assumptions

The model considers a cracked portion of a composite beam with a rectangular cross-section under
bending M (Fig. 1). The crack is assumed to be subjected to Mode I loading (i.e. the crack is normal to the
longitudinal axis of the beam). Reinforcements are discretely distributed across the crack and oriented
along the longitudinal axis of the beam. Although the problem being considered is three-dimensional in
nature, it is herein approximately treated as a two-dimensional one.

The height and thickness of the beam cross-section are equal to b and ¢, respectively, whereas the crack
depth is called a (Fig. 1(a)). The position of the ith reinforcement (i = 1,...,n, where n is the number of
reinforcements intersected by the crack) is described by the distance ¢; with respect to the bottom of the
beam cross-section. Note that the reinforcement numbers are sorted according to the reinforcement
positions along the beam height, by assuming that reinforcement No. 1 is the nearest to the bottom of the
beam cross-section. The relative crack depth ¢ = a/b and the normalised coordinate {; = ¢;/b are also
defined.

The mechanical behaviour of the composite beam is as follows. The matrix (treated as a homogeneous
and isotropic material) is assumed to present a linear elastic constitutive law, whereas the reinforcements
are assumed to behave as rigid-perfectly plastic (symmetric in both tension and compression) bridging
elements which connect together the two surfaces of the crack. Such a behaviour originates from an
approximating relationship between the bridging force carried by a single reinforcement (understood as a
pullout force for the reinforcement) and the related translation of the reinforcement in correspondence to
the crack surface, assuming that the translation is solely due to the slip at the reinforcement-matrix
interface under constant frictional bond when the debonding zone has fully developed (i.e. when the length
of the slip activated zone equates either the length of the reinforcement embedded into the matrix or its
anchorage length). The above fully debonded condition is hereafter termed ‘slippage’ of the reinforcement.
Moreover, in order to account for failure of the reinforcement material itself, it is assumed that the
infinitesimal uncovered reinforcement segment between the two crack surfaces can plastically flow under
the bridging force (this condition is hereafter termed °‘yielding’ of the reinforcement) and, therefore,
ignoring elastic deformation in the reinforcement, a rigid-perfectly plastic constitutive law is assumed for
the reinforcement. Hence, the rigid-perfectly plastic bridging law of the generic (ith) reinforcement is
characterised by an ultimate force Fp; (and —Fp; in compression) corresponding to either slippage or
yielding, whichever of them exhibits the minimum absolute value.

The loading process presents constant amplitude cycles of the bending moment M, ranging from M,,;, to
M.« (Fig. 2). Note that, for negative values of M,,,, the tensile stress at the top of the beam cross-section
should be lower than the tensile strength of the matrix. The successive cross-sectional configurations during
the loading process must satisfy equilibrium and compatibility conditions. Since the problem being
examined is statically indeterminate, the unknown reinforcement reactions F; (with i =1,...,n) on the
matrix can be deduced from n kinematic conditions related to the crack opening translations w; at the
different reinforcement levels, as is discussed below. If |Fj| is equal to Fp,, the force of the ith reinforcement
becomes known, and the crack opening translations are hereafter shown to depend on such a value.
According to the present model, no cycle-dependent degradation of either the interfacial bond or the yield
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Fig. 2. Cycles of bending moment.

strength is considered and, hence, the ultimate forces Fp; (with i = 1,...,n) are assumed to be constant as
the number of loading cycles increases.

2.2. Monotonic loading

First of all, consider the cracked composite beam subjected to a bending moment M (opening the crack)
monotonically increasing. As is mentioned above, the matrix behaves in a linear elastic manner. Therefore,
linear elastic fracture mechanics can be applied, and the crack opening translation w; at the ith rein-
forcement level is obtained through the superposition principle and the localised compliances due to the
crack (see Appendix A):

Wi:WiM'FZWij:)»iMM—ZiUF} (1)
=1 =1

where wy, and w;; are the crack opening translations produced by the bending moment M and by the
generic reaction F; (assumed to be positive when the jth reinforcement is under tension), respectively; the
localised compliances, 4, and 4;, due to the crack represent the ith crack opening translation for M =1
and that for a unit crack opening force, F; = 1, acting at {;, respectively.

The kinematic equations to determine the unknown reinforcement reactions can be deduced from
congruence conditions. In other words, because of the rigid-perfectly plastic laws for the reinforcements
and the reinforcement-matrix interface, compatibility requires that w; (i = 1,...,n) be equal to zero until
yielding or slippage of at least one of the n reinforcements is reached (Fig. 1(b) and (c)). Using matrix
formulation, this compatibility condition reads:

{w} = {4 M — [A{F} = {0} 2)
where {w} = {wy,...,w,}" is the vector of the crack opening translations at the different reinforcement
levels, and {F} = {F,...,F,}" is the vector of the unknown bridging forces. Further, {1} is the vector of
the localised compliances related to the bending moment M, whereas [/] is a symmetric square matrix of

order n, whose generic element ij (ith row, jth column) represents the localised compliance /;;. Hence, the
unknown vector {F} can be obtained from Eq. (2):

{Fy =14 {Au}M 3)

If the generic (ith) reinforcement yields or slips, the crack opens at the coordinate {;, and w; becomes an
unknown quantity. Therefore, the number of kinematic conditions in Eq. (2) reduces by one, along with the
degree of statical redundancy, F; being equal to the previously defined maximum bridging force Fp;.
Consequently, the number of equations which can be written (n — 1) continues to be equal to the number of
unknowns (n — 1). At the subsequent yielding or slippage of some reinforcement, the number of kinematic
conditions reduces further along with the number of statically indeterminate forces.
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In order to account for the previously yielded or slipped reinforcements, the compatibility condition of
Eq. (2) can formally be written as follows:

{w} = [H]({2}M - 2{F}) = {0} (4)

where [H] is a diagonal matrix whose generic element ii is given by the Heaviside function H(x) with
x=1- \F,-\/Fpi (H(x) =1 for x>0, H(x) = 0 for x<0), and

{F} = [H{F} + (1 - [H){F} (5)

with {Fp} = {FpJ7 ..., Fp,}", whereas [I] is the unit matrix of order n. Note that, since the matrix [H]
becomes singular when at least one reinforcement yields or slips, equation(s) related to H; = 0 must be
eliminated for solving Eq. (4). Moreover, it should be remarked that, being the matrix [H] a function of the
solution vector {F'}, an iterative procedure is in principle required to solve Eq. (4), but another method is
proposed in the following.

After determining the solution vector {F'} from Eq. (4), the vector {17} is obtained from Eq. (5), and the
crack opening translations {w} are computed as follows:

{wh = {Aw}M — [A){F} (6)

The relative rotation ¢ due to the crack only (i.e. excluding the elastic deformation of the matrix) of the
two extreme cross-sections of the beam portion in Fig. 1(a) is given by:

@ = JaeM — {} {F} (7)

where 1,5, is reported in Eq. (A.13). Eq. (7) is deduced by applying the Castigliano theorem, namely,
@ =0U/OM = —0W /oM, where U and W are the variations of, respectively, the strain energy and the total
potential energy of the body due to the introduction of the crack, with the applied loads (external bending
moment and reinforcement reactions) kept constant. The variation W of the total potential energy can be
computed by substituting the expressions (A.7) and (A.8) in Eq. (A.5).

Note that the collapse of the beam under the applied bending moment might occur because of two
possible reasons: (1) unstable fracture of the matrix (when the toughness K;c of the material is attained, that
is, K; = K;c, where the stress intensity factor K; is obtained through the superposition principle:
K; = K — Y1 K, with K, and Kj; given by Eqgs. (A.7) and (A.8), respectively), or (2) crushing of the
matrix (when the normal compressive stress o, computed through the classical bending theory applied to
the ligament, attains the material strength f).

2.3. Cyclic loading

Reinforcements under cyclic bending moment might undergo plastic-to-rigid transitions at load rever-
sals. Hence, the compatibility condition of Eq. (4) is modified in order to consider possible non-zero
translations {w} at reversals:

{w} = {wo} = [H]({An} (M — Mo) — PI({F} - {Fo})) = {0} (8)
with {F} given by:

{F} = [H{F} + q(l1] - [H){Fp} 9)
where ¢ = 1 during loading and ¢ = —1 during unloading. The subscript ‘0’ refers to the values of some

parameters (crack opening translations, bending moment and reinforcement reactions) at the preceding
load reversal. Obviously, the quantities related to the subscript ‘0’ are equal to zero at the beginning of the
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loading process, i.e. at the first loading half-cycle. Once the solution vector {F'} is obtained from Eq. (8),
{f} can be computed by Eq. (9), and crack displacements can be deduced by Egs. (6) and (7).

The crack is herein assumed to propagate (under cyclic loading) according to the Paris law

(da/dN = CAK;}"; Paris and Erdogan, 1963). For convenience, increments of crack length due to fatigue
crack growth are determined after every block of a given number of cycles. Note that the above increments
imply an increase of localised compliances at constant applied loads (i.e. bending moment M and bridging
forces {F}).

2.4. Model implementation

L.

2.

>

)]

oo~

The calculation procedure for the theoretical model here presented is as follows:

Compute the localised compliances (see Eqgs. (A.11)-(A.13)) for the beam being considered, with a given
value of the initial crack length &;.

At the generic load step &, determine the solution vector {F } from Eq. (8), by posmg either M = M.«
(during loading) or M = My, (during unloading). Calculate the load factor B% for which the most
highly stressed reinforcement is on the verge of its yielding or slippage:

(k) (k=1)

F —F

B(k) = max 1711{1 (10)
=i | gy — ED

1

where ¢ = 1 during loading and ¢ = —1 during unloading. Note that, when the % value computed from
Eq. (10) results to be lower than 1 (that occurs when no reinforcement yields or slips during an unloading
and/or loading half-cycle), the load factor is posed as equal to the unity (see Egs. (11) and (12) to better
understand such a position)

. From the load factor %, calculate the moment M® for which the most highly stressed reinforcement

is on the verge of its yieldlng or slippage, namely:

(k=1)
M<k)_u+Mk ) (11)
ﬁ( )
where M = M,,,x during loading and M = M,;, during unloading.
Note that, at a load step k corresponding to either a loadingfunloading reversal or an unloading—
reloading reversal, f*) is equal to 1 and, according to Eq. (11), M® results to be equal to either M,x or
M. Further, at the first load step k after a loading—unloading reversal, M*~1 is equal to M,,,, whereas,
at the first load step k after an unloading-reloading reversal, M*~V is equal to My;,. Then, it can be
remarked that, at the very first load step (i.e. k = 1), M%) = M© is equal to 0.
Update the reinforcement reactions:

(o = L gy 12

. Calculate the rotation ¥ according to Eq. (7), by substituting M with M*) (determined from Eq. (11))

and {F} with {7(]‘)} where {F (k)} is obtained from Egs. (9) and (12).
. If the load step k terminates at a reversal, store the crack opening translations {w } (computed through
Eq. (6), with M = M® and {F} = { ")}).

Stop if K; = K¢ or if the compressive strength f; is attained in the matrix.
Increase the crack length according to the Paris law and update the localised compliances.
Return to step No. 2 of the present procedure.
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3. Bending moment vs rotation response
3.1. Shake-down behaviour

The proposed theoretical model can be illustrated by applying it to some simple cases which point out all
its essential features. The overall response of the cracked beam cross-section under cyclic bending is
qualitatively analysed in terms of applied bending moment vs cross-section rotation curves.

Firstly, the case of a single reinforcement is considered. Under certain values of loading and mechanical
and geometrical parameters, the bending moment vs rotation curve for a single cycle might look like that
reported in Fig. 3. The numbers (from 1 to 6) in the graph indicate the sequence of the load steps, while the
upwards and downwards triangular symbols refer to tensile and compressive yielding/slippage of the
reinforcement, respectively. It can be noted that the most significant values of the bending moment in a
loading cycle are: the plastic bending moment Mp (equal to MV) which produces yielding or slippage in the
reinforcement (subjected to tension) during loading, and the shake-down bending moment Msp (equal to
M®)) above which yielding or slippage in the reinforcement (subjected to compression) occurs during
unloading (see load step No. 3, represented by the segment 2-3 in Fig. 3).

With reference to the above case, the following regions of behaviour can be observed:

(1) elastic behaviour for 0 < M, < Mp;
(i) elastic shake-down for Mp < My, < Msp;
(iii) plastic shake-down for Msp < My, < Mg (Mg =bending moment of matrix unstable fracture when
K; attains K;c, or bending moment of matrix crushing when the compressive strength f; is attained).

Note that, in the case of plastic shake-down, the bending moment vs rotation curve describes a hysteretic
loop (for the example displayed in Fig. 3, the energy dissipated in each cycle is equal to the area 2-3-4-5-6).

Now let us consider a beam with multiple reinforcements. For the sake of simplicity, three identical
reinforcements are assumed, and the bending moment against rotation curve is shown in Fig. 4. As in the
previous case, the numbers in the graph indicate the sequence of the load steps, while the upwards and
downwards triangular symbols refer to tensile and compressive yielding/slippage of the reinforcements,
respectively. The plastic bending moment Mp (equal to M(V) and the shake-down bending moment Mgy,
(equal to M) are displayed, and the aforementioned three regions of behaviour can be observed. The
energy dissipated in each cycle is equal to the area of the hysteretic loop 4-5-6-7-8-9-10-11-12.

Some further observations can be made for the case being examined. Each reinforcement is characterised
by a plastic bending moment Mp; and a shake-down bending moment Msp ;: Mp;, Mp, and Mp 3 correspond

E |V'max ;6
§ Mo

e

o

e

2 Mp

©

5 .

m min 4 1 reinforcement

Rotation, ¢

Fig. 3. Typical bending moment vs rotation hysteretic loop in the case of a single reinforcement.
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Fig. 4. Typical bending moment vs rotation hysteretic loop in the case of three reinforcements.

to MY, M@ and M®), respectively, whereas Msp 1, Msp, and Msp 3 correspond to M), M1 and MUY,
respectively (Fig. 4). Obviously, the overall plastic bending moment Mp, defining the transition from elastic
behaviour to elastic shake-down, is given by the minimum among the reinforcement plastic bending mo-
ments Mp;, as well as the overall shake-down bending moment Mgp, defining the transition from elastic
shake-down to plastic shake-down, is given by the minimum among the reinforcement shake-down bending
moments Msp;. Intermediate regions of behaviour, where only certain reinforcements undergo yielding/
slippage in tension and/or compression, can be conceived: for instance, if we had Msp,> < M. < Msp 3,
tensile yielding or slippage in the three reinforcements and compressive yielding or slippage in only two
reinforcements would occur.

The observations made for the cases in Figs. 3 and 4 can be extended to the general case of » rein-
forcements. Hence, the following general relationships can be written:

My, = M® (13)

where k refers to the load step for which the ith reinforcement is on the verge of its yielding or slippage
in tension, and

MSD,i = Mmax - M(k> + Mmin (14)
where k£ now refers to the load step for which the ith reinforcement is on the verge of its yielding or slippage
in compression. Then the overall plastic and shake-down bending moments are given by:

Mp = min{Mp,} (15a)

Msp = min{Msp,} (15b)

It should be noted that the following relationship between Mp; and Mgp,; of the generic (ith) rein-
forcement holds:

Mgp; = 2Mp ; + Myin (16)

In the region of plastic shake-down behaviour (Msp < My.x < ME), the energy dissipated per cycle can be
calculated as follows:

Se

T g w

k=sp

where s, = load step at the beginning of the cycle, and s. =load step at the end of the cycle (e.g. s, = 4 and
se = 12 for the cycle in Fig. 4).
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It might be worth pointing out that, by employing the proposed model and assuming a non-propagating
crack in the composite beam being considered, the cyclic flexural behaviour described above in terms of
bending moment against beam cross-section rotation is reminiscent of that predicted through a classical
constitutive theory for cyclic plasticity with a linear-piecewise kinematic hardening rule (e.g. see Chaboche,
1986, for a review, and Masing, 1926, for his early parallel sub-element model). As a consequence, no
ratchetting effect (accumulated plastic deformations) can be accounted for by the present model.

According to the dimensional analysis and within the range of validity of the model assumptions (see
Carpinteri Al and Massabo, 1997, for monotonic loading), the bending moment vs rotation relationship, M
vs ¢ (see Eq. (7)), can be written in the following dimensionless form provided that the geometrical

parameters ¢/b, ¢ and {; (i = 1,...,n) are fixed, the ultimate forces Fp; (i = 1,...,n) are identical to one
another and failure is supposed to be caused by unstable fracture of the matrix:
M :f((p,Np,E‘> (18)
where
~ M
M=——7-: 19
o (199)
Z"l—l Lp
Np === 1
P Kbt (19b)
~  EB%S
E= (19¢)
Kic

Moreover, in the last paper mentioned above, it has been shown that the dimensionless bending moment vs
normalised rotation relationship, M vs ¢ (with @ = @FE), is solely controlled by the dimensionless
parameter Np (called brittleness number after Carpinteri Al, 1984), namely, the cyclic flexural responses of
beams having different values of the mechanical and geometrical parameters are physically similar to one
another if the number Np is the same.

3.2. Fatigue crack growth

Now let us consider the crack propagation according to the Paris law. The case of three identical
reinforcements, analogous to the case in Fig. 4, is examined. Fig. 5 shows bending moment vs rotation
curves at different numbers of loading cycles (the first cycle, the generic Nth cycle, and the final N,th cycle).
It can be remarked that, as the crack propagates, the values of the local compliances (see Egs. (A.11)-
(A.13)) increase and, hence, the slopes of the linear segments in the diagram M vs ¢ decrease. Further, by
increasing &, the value of the shake-down bending moment Msp (see MS(B, Még) and Ms(g") in Fig. 5) de-
creases. Consequently, the energy dissipated at every hysteretic loop varies as the number of loading cycles
increases. Finally, the fatigue collapse of the beam can occur due to either matrix unstable fracture, when K;
attains K;c, or matrix crushing, when o, attains f.

4. Numerical examples

Consider a reinforced concrete beam cross-section with ¢ = 0.2 m, b = 0.3 m, submitted to pulsating
cyclic bending (M, = 0). The concrete mechanical properties £ and K;c are assumed to be equal to 32.1
GPa and 1.75 MPa +/m, respectively. Further, in the present section, the concrete compressive strength is
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Fig. 5. Typical bending moment vs rotation hysteretic loops at different numbers of loading cycles, in the case of three reinforcements.

assumed to be as high as to avoid crushing failure (that is, failure is supposed to be caused by unstable
fracture of the matrix in the following examples).

Firstly, let us examine the case of a single reinforcement at {; = 0.1, with an ultimate force equal to
10,053 N (e.g. corresponding to a steel bar of diameter 8 mm and yield strength equal to 200 MPa), so that
the brittleness number Np is equal to about 0.05. By varying, for instance, the reinforcement percentage,
different values of Np could be obtained: three possible values, considered in the following examples, are
0.02, 0.05 and 0.10. N N N
_ Fig. 6 shows the variation of the dimensionless (see Eq. (19a)) shake-down (Msp, with Msp = 2Mp for
M, = 0, see Eq. (16)) and unstable fracture (Mp) bending moments against the relative crack depth &, for
the three above values of Np. It can be remarked that both such characteristic bending moments decrease

) 0.30 —
Mg
0.25 |- -
Msp
0.20

1 reinforcement
Np =.10

o

=

o
T

Np =.05

Dimensionless bending moment, M
o o
& &
T T

Np=.02
" 1 "

0 0.2 0.4 0.6 0.8 1

o
8

Relative crack depth,&

Fig. 6. Dimensionless shake-down (1\71513) and unstable fracture ( Mg bending moments vs relative crack depth, for My =0and a
single-reinforcement beam with different values of the brittleness number Np.
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Fig. 7. Dimensionless plastic (A?p), shake-down (/VISD) and unstable fracture (A7IF> bending moments vs relative crack depth, for
Myin = 0 and a single-reinforcement beam with Np = 0.05.

with increasing ¢ but, depending on the values of ¢ and Np, Mg can be higher or lower than Msp. Clearly,
unstable fracture tends to precede elastic and/or plastic shake-down as the brittleness number Np increases.

By selecting a dimensionless maximum bending moment M, and an initial relative crack depth &, the
three regions of behaviour previously described (elastic behaviour, elastic shake-down and plastic shake-
down) can be encountered as the crack undertakes fatigue propagation (i.e. ¢ increases). For instance, by
assuming My.x = 0.075, &, = 0.15 and Np = 0.05 (Fig. 7), we encounter an elastic behaviour for
0.15< ¢ < 0.24, an elastic shake-down for 0.24 < ¢ < 0.47, and a plastic shake-down for 0.47 < & up to
unstable fracture failure at £ = 0.55. N

Taking advantage of Fig. 7, two significant loading cases (M, equal to 0.10 and 0.15, respectively) are
considered for the cracked beam with Np = 0.05 and &;;;, = 0.15. Assuming typical values of the Paris law
parameters for plain concrete (C = 7.71 x 107> and m = 3.12 for crack growth rate and stress—intensity
range expressed in m/cycle and Nm~3/2, respectively; Baluch et al., 1987), dimensionless bending moment M
against normalised rotation ¢ (with » = @E, and E given by Eq. (19¢)) cyclic curves up to fatigue failure
can be determined through the proposed theoretical model (Fig. 8). Crack propagation has been calculated
every 100 loading cycles for computational efficiency, whereas the results in Figs. 8 and 9 are plotted for
some numbers of loading cycles only. It can be observed that, for M., = 0.15 (Fig. 8(a)), the crack
propagates in the elastic shake-down region (without energy dissipation in hysteretic loops) up to unstable
fracture after N, = 2.8 x 103 cycles (see star symbol, which corresponds to ¢ = 0.23 as also obtained from
Fig. 7). On the other hand, for Moax = 0.10 (Fig. 8(b)), a transition from elastic shake-down to plastic
shake-down occurs, with energy dissipation in hysteretic loops up to unstable fracture after N, = 23.8 x 10°
cycles (see star star symbol, which corresponds to ¢ = 0.42 as also obtained from Fig. 7).

Now consider the case of three identical reinforcements located at {;, {, and {5 equal to 0.06, 0.10 and
0.14, respectively, so that their centroid is at { = 0.10 (i.e. at the same level of the single reinforcement
examined above). Let us assume that M,,,x be equal to 0.10, and the geometrical and mechanical para-
meters chosen yield Np = 0.05. Fig. 9 shows dimensionless bending moment vs normalised rotation cyclic
curves up to fatigue failure after Ny = 62.5 x 10° cycles (see star symbol, which corresponds to & = 0.42).
Juxtaposing Figs. 8(b) and 9, it can be noted that, although failure occurs at the same relative crack depth
(¢ = 0.42) in both cases, the presence of multiple reinforcements causes plastic shake-down from the very
beginning of the crack growth process, while such a region of behaviour is preceded by a remarkably large
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Fig. 8. Dimensionless bending moment vs normalised rotation curves, for A7Imin = 0 and a single-reinforcement beam with Np = 0.05
[the numbers near the peaks of the cyclic curves indicate the relative crack depth (&)]: (a) Mmax = 0.15, curves plotted at the first cycle
(N = 1), after every 300 cycles and at the final cycle (N, = 2.8 x 10°); (b) My = 0.10, curves plotted at the first cycle (N = 1), after
every 3000 cycles and at the final cycle (N, = 23.8 x 10%).

zone of elastic shake-down in the case of a single reinforcement, the values of the other parameters being
equal to those of the previous case. In addition, the fatigue life of the three-reinforcement beam is greater
(by a factor equal to about three) than that of the single-reinforcement beam.

To summarise, the comparison between the case of a single reinforcement and that of three reinforce-
ments (Np = 0.05 for both cases) is shown in Fig. 10 in terms of the dimensionless dissipated energy
(dissipated energy multiplied by £/(K;cb)?) per hysteretic loop against the number of loading cycles. The
early stage of elastic shake-down (N less than about 20,000 loading cycles), where dissipated energy is null,
can be recognised for the case of a single reinforcement. Further, it can be remarked that the total
dimensionless dissipated energy computed for a single reinforcement and for three reinforcements is
respectively equal to about 49 and 492. Therefore, according to the present model, by distributing the same
area of reinforcement among a multiple number of elements (three elements in the example being con-
sidered), the energy dissipation capacity of the beam as well as its fatigue life (see also the final part of the
previous paragraph) significantly increase.
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of the cyclic curves indicate the relative crack depth (¢)].
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Fig. 10. Dimensionless dissipated energy (work/cycle multiplied by £/(K ch)z) per hysteretic loop vs number of loading cycles, for both
a single-reinforcement and a three-reinforcement beam (M, = 0, Myay = 0.10, Np = 0.05).

5. Conclusions

A theoretical model based on fracture mechanics concepts is herein proposed to analyse the hysteretic
behaviour of a brittle-matrix composite beam subjected to cyclic bending. Accordingly, a cracked beam
with an elastic matrix and reinforcements acting as rigid-perfectly plastic bridging elements has been
examined. The simple assumptions of the model allow us to describe typical cyclic phenomena, including
elastic shake-down and plastic shake-down, and to predict fatigue life.

The capabilities of the model are presented in terms of applied bending moment against beam cross-
section rotation, by pointing out that the response of the composite beam is dependent on the so-called
brittleness number. The influence of such a parameter on the elastic behaviour, elastic shake-down and
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plastic shake-down has been discussed by analysing some numerical examples. Furthermore, the energy
dissipation in the hysteretic loops of plastic shake-down is shown to be influenced by the number of
reinforcement elements among which a certain reinforcement area is distributed, the values of the other
parameters being the same. For instance, if three reinforcements are considered instead of a single rein-
forcement, the total dissipated energy along with the fatigue life significantly increase.
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Appendix A

Let us consider a general linear-elastic plane stress problem for a cracked body. The body contains a
through-thickness crack of length a, and is subjected to n generalised point loads F;, i =1,...,n. The
generic point-load translation J; can be expressed by the following relationship:

j=1

where 4;; are the localised compliances.
For an increment of the crack length da, a variation of the total potential energy d#W of the body occurs.
Applying the Clapeyron theorem, such a variation can be expressed as follows:

aw = — Z Z %E-F,-di,-,— (A2)
=1 j=1

where d4;; are the increments of the localised compliances due to crack extension da. Also, according to the
Irwin relationship, the variation of the total potential energy d can be expressed by:

K oK) " KK
dW:—( n+-+Kp) tdaz—zz%fda (A.3)
=1 =1

E

where the generic Kj; is the stress intensity factor at the crack tip due to the generalised force F;.
Integration of Egs. (A.2) and (A.3) yields two expressions for the variation of the total potential energy
due to the presence of the crack with length a:

n n 1
V=2 23R -
=1 j=

o3 [ a9

=1 =1
Juxtaposing Eqs. (A.4) and (A.5), the generic localised compliance /;; can be defined as:

2 [ KK,
Ji== | 2y

. A6
""E ), FF (A.6)

For the beam element in Fig. 1, the localised compliances can be calculated from Eq. (A.6) by considering
the stress intensity factors for the applied loads, namely for the bending moment M and the reinforcement
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reactions F;, i = 1,...,n. The expressions here adopted for the stress intensity factors are taken from (Tada
et al., 1985), i.e.
M
F;
Ky = 505 I Ye(&, () (A.8)
where
6(1.99¢%% —2.47¢"° 412,978 — 23.178° + 24.85%%)  ¢<0.6
Yu(é) = { §.99 ¢ : i &) 2> 06 (A9)
(1-9™ '
and
Ye(E,0) = — 1 GaL) fore>t
Vné 15 )2 ’ —
(1-9"/1- (%)
o G 4 Gy
G(&, ) =gi1(8) +8(8) = z +85(¢) z +g4(f) z
(A.10)
g1(&) = 0.46 + 3.06¢ + 0.84(1 — &)° 4+ 0.66&>(1 — &)

(&) =
£(¢) = -3.52¢°
23(6) = 6.17 — 28.22¢ 4 34.548% — 14.39& — (1 — &)'° — 5.88(1 — &)° — 2.64&(1 — &)’
24(&) = —6.63 +25.16¢ — 31048 + 14418 +2(1 — &)'° +5.04(1 — &)’ + 1.98%(1 — &)°
By inserting Eqs. (A.7)-(A.10) in Eq. (A.6), the localised compliances 4;;, s and Ay, can be obtained:
2 ¢

hij = hi = o . Yr (5/, Ci) Yr (f/, Cj)df/ (A.11)
2 ¢

i = [ ¥e(2.0) B¢ (A12)

1 2 é ! !

Ayt :ﬁ/o Yi(&)dé (A.13)

Details on how to overcome the singularities in the integrals (A.11) and (A.12) are given in (Carpinteri Al
and Massabo, 1997).

References

Baluch, M.H., Qureshy, A.B., Azad, A.K., 1987. Fatigue crack propagation in plain concrete. In: Shah. S.P., Swartz, S.E. (Eds.),
Proceedings of the SEM/RILEM International Conference on Fracture of Concrete and Rock, Houston, Texas, pp. 80-87.

Carpinteri Al, 1984. Stability of fracturing process in RC beams. Journal of Structural Engineering ASCE 110, 544-558.

Carpinteri Al, Carpinteri An, 1984. Hysteretic behavior of RC beams. Journal of Structural Engineering ASCE 110, 2073-2084.

Carpinteri Al, Massabo, R., 1996. Bridged versus cohesive crack in the flexural behaviour of brittle-matrix composites. International
Journal of Fracture 81, 125-145.



A. Carpinteri et al. | International Journal of Solids and Structures 41 (2004) 5499-5515 5515

Carpinteri Al, Massabo, R., 1997. Continuous vs discontinuous bridged-crack model for fiber-reinforced materials in flexure.
International Journal of Solids and Structures 34, 2321-2338.

Carpinteri Al, Puzzi, S., 2003. Hysteretic flexural behaviour of brittle matrix fibrous composites: the case of two fibers. In: Proceedings
of the 16th AIMETA Congress of Theoretical and Applied Mechanics, Ferrara, Italy.

Carpinteri An, 1991. Energy dissipation in R.C. beams under cyclic loadings. Engineering Fracture Mechanics 39, 177-184.

Carpinteri An, 1992. Reinforced concrete beam behavior under cyclic loadings. In: Carpinteri Al (Ed.), Applications of Fracture
Mechanics to Reinforced Concrete. Elsevier Science Publishers, UK, pp. 547-578.

Chaboche, J.L., 1986. Time-dependent constitutive theories for cyclic plasticity. International Journal of Plasticity 2, 149-188.

Masing, G., 1926. Eigenspannungen und verfestigung beim Messing. In: Proceedings of the 2nd International Conference of Applied
Mechanics, Zurich, pp. 332-335 (in German).

Matsumoto, T., Li, V.C., 1999. Fatigue life of fiber reinforced concrete with a fracture mechanics based model. Cement & Concrete
Composites 21, 249-261.

Paris, P.C., Erdogan, F., 1963. A critical analysis of crack propagation laws. Journal of Basic Engineering 85, 528-534.

Tada, H., Paris, P.C., Irwin, G., 1985. The Stress Analysis of Cracks. Paris Productions Incorporated (and Del Research Corporation),
St. Louis, Missouri.

Zhang, J., Stang, H., 1998. Fatigue performance in flexure of fiber reinforced concrete. ACI Materials Journal 95, 58-68.

Zhang, J., Stang, H., Li, V.C., 1999. Fatigue life prediction of fiber reinforced concrete under flexural load. International Journal of
Fatigue 21, 1033-1049.



	A fracture mechanics model for a composite beam with multiple reinforcements under cyclic bending
	Introduction
	Description of the model
	Model assumptions
	Monotonic loading
	Cyclic loading
	Model implementation

	Bending moment vs rotation response
	Shake-down behaviour
	Fatigue crack growth

	Numerical examples
	Conclusions
	Acknowledgements
	Appendix A
	References


