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Abstract

The flexural behaviour of a composite beam (e.g. a reinforced concrete beam) with multiple reinforcements under

cyclic loading is analysed through a fracture mechanics-based theoretical model which considers a cracked beam

subjected to an external bending moment and the crack bridging reactions due to the reinforcements. Assuming a rigid-

perfectly plastic bridging law for the reinforcements and a linear-elastic law for the matrix, the statically indeterminate

bridging forces are obtained from compatibility conditions. Typical phenomena, such as elastic shake-down and plastic

shake-down, in the composite beam under cyclic bending are described in terms of applied bending moment against

beam cross-section rotation. Further, by employing a fatigue crack growth law (e.g. the Paris law), the mechanical

behaviour of the examined beam up to failure can be captured. Some numerical examples to illustrate the capabilities of

the proposed theoretical model are presented.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many composite materials used in different engineering applications consist of a brittle matrix and

ductile reinforcements (e.g. bars, wires, fibers). By incorporating such reinforcements into the matrix,

several mechanical properties are enhanced, including: cracking resistance, ductility, impact resistance,
fatigue strength. In the field of civil engineering, for instance, fiber-reinforced cementitious composites are

employed in an increasing amount of structures (e.g. airport pavements, highway overlays, bridge decks,

machine foundations, shear walls) which are subjected to repeated loadings during their service life. Such

loadings are characterized by a number of cycles ranging from few hundreds (as for shear walls under

seismic loading) to hundreds of millions (as for foundations supporting dynamic machines).
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Nomenclature

a crack depth

b height of the beam cross-section

ci position of the ith reinforcement with respect to the bottom of the beam cross-section

E Young modulus of the matrix

fc compressive strength of the matrix

Fi bridging force (reaction) of the ith reinforcement

FP;i ultimate force (reaction) of the ith reinforcement

KI stress intensity factor
KIC critical stress intensity factor (fracture toughness)

M bending moment

MF bending moment of either unstable fracture or crushing of the matrix

Mmax maximum bending moment

Mmin minimum bending moment

MP plastic bending moment

MSD shake-down bending moment

n number of reinforcements intersected by the crack
N number of loading cycles

Nf number of loading cycles to failure

NP brittleness number

t thickness of the beam cross-section

wi crack opening translation at the ith reinforcement level

bðkÞ load factor related to the load step k
fi ¼ ci=b relative position of the ith reinforcement with respect to the bottom of the beam cross-section

kij localised compliance related to the crack opening translation at the ith reinforcement level due
to a unit crack opening force Fj ¼ 1 acting at fj

kiM localised compliance related to the crack opening translation at the ith reinforcement level due

to a unit bending moment M ¼ 1

kMM rotational localised compliance due to a unit bending moment M ¼ 1

n ¼ a=b relative crack depth

rc compressive stress in the matrix

u rotation of the cracked beam cross-section

Subscripts

0 referring to the preceding load reversal

i referring to the ith reinforcement intersected by the crack, with i ¼ 1; . . . ; n
j referring to the jth reinforcement intersected by the crack, with j ¼ 1; . . . ; n

Superscripts

~ referring to a dimensionless (normalised) parameter

ðkÞ referring to the load step k
ðNÞ referring to the N th loading cycle, with N ¼ 1; . . . ;Nf

Other symbols are defined as they appear in the text.
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Cracks might develop in structures of reinforced brittle-matrix composite materials, so that the overall

mechanical behaviour would strongly be affected by the crack bridging reactions of the reinforcements.

Moreover, the progressive crack growth under cyclic loading influences the bridging behaviour, and causes

significant changes in the mechanical properties of the above materials (strength, toughness, stiffness,
hysteretic behaviour, etc.), eventually leading to failure. A number of theoretical models have been pro-

posed to describe such phenomena and to predict fatigue life (for instance, see recent models for fiber-

reinforced concrete structural components subjected to cyclic bending, discussed in Zhang and Stang

(1998), Zhang et al. (1999) and Matsumoto and Li (1999)).

In the present paper, a fracture mechanics-based model is proposed to analyse the flexural behaviour of a

composite beam with multiple reinforcements under cyclic loading. Such a model considers a cracked

portion of a beam subjected to an external bending moment and the crack bridging reactions due to the

reinforcements (Fig. 1). Assuming a rigid-perfectly plastic bridging law for the reinforcements and a linear-
elastic law for the matrix, the statically indeterminate bridging forces are obtained from compatibility

conditions related to the crack opening translations at the levels of the reinforcements. Typical phenomena,

such as elastic shake-down and plastic shake-down, are described in terms of applied bending moment

against beam cross-section rotation. Finally, the flexural behaviour of the composite beam up to failure is

captured by applying the well-known Paris fatigue crack growth law, and some numerical examples to

illustrate the capabilities of the present theoretical model are discussed.

The model here proposed originates from previous formulations for monotonic loading applied to

beams with either a single reinforcement (Carpinteri Al, 1984) or multiple reinforcements (Carpinteri Al
and Massab�o, 1996, 1997), while only the cases of either a single reinforcement (Carpinteri Al and

Carpinteri An, 1984; Carpinteri An, 1991; Carpinteri An, 1992) or two reinforcements (Carpinteri Al and

Puzzi, 2003) have so far been analysed for cyclic loading. Note that, in the aforementioned works, the

compatibility conditions considered for determining the statically indeterminate reinforcement reactions
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Fig. 1. (a) Schematic of the model; (b) crack profile for elastic reinforcements; (c) crack profile for yielded or slipped reinforcements.
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are related to the rotation of the cracked beam cross-section in the case of a single reinforcement, and to

crack opening translations in the case of multiple reinforcements.
2. Description of the model

2.1. Model assumptions

The model considers a cracked portion of a composite beam with a rectangular cross-section under

bending M (Fig. 1). The crack is assumed to be subjected to Mode I loading (i.e. the crack is normal to the
longitudinal axis of the beam). Reinforcements are discretely distributed across the crack and oriented

along the longitudinal axis of the beam. Although the problem being considered is three-dimensional in

nature, it is herein approximately treated as a two-dimensional one.

The height and thickness of the beam cross-section are equal to b and t, respectively, whereas the crack
depth is called a (Fig. 1(a)). The position of the ith reinforcement (i ¼ 1; . . . ; n, where n is the number of

reinforcements intersected by the crack) is described by the distance ci with respect to the bottom of the

beam cross-section. Note that the reinforcement numbers are sorted according to the reinforcement

positions along the beam height, by assuming that reinforcement No. 1 is the nearest to the bottom of the
beam cross-section. The relative crack depth n ¼ a=b and the normalised coordinate fi ¼ ci=b are also

defined.

The mechanical behaviour of the composite beam is as follows. The matrix (treated as a homogeneous

and isotropic material) is assumed to present a linear elastic constitutive law, whereas the reinforcements

are assumed to behave as rigid-perfectly plastic (symmetric in both tension and compression) bridging

elements which connect together the two surfaces of the crack. Such a behaviour originates from an

approximating relationship between the bridging force carried by a single reinforcement (understood as a

pullout force for the reinforcement) and the related translation of the reinforcement in correspondence to
the crack surface, assuming that the translation is solely due to the slip at the reinforcement–matrix

interface under constant frictional bond when the debonding zone has fully developed (i.e. when the length

of the slip activated zone equates either the length of the reinforcement embedded into the matrix or its

anchorage length). The above fully debonded condition is hereafter termed ‘slippage’ of the reinforcement.

Moreover, in order to account for failure of the reinforcement material itself, it is assumed that the

infinitesimal uncovered reinforcement segment between the two crack surfaces can plastically flow under

the bridging force (this condition is hereafter termed ‘yielding’ of the reinforcement) and, therefore,

ignoring elastic deformation in the reinforcement, a rigid-perfectly plastic constitutive law is assumed for
the reinforcement. Hence, the rigid-perfectly plastic bridging law of the generic (ith) reinforcement is

characterised by an ultimate force FP;i (and �FP;i in compression) corresponding to either slippage or

yielding, whichever of them exhibits the minimum absolute value.

The loading process presents constant amplitude cycles of the bending moment M , ranging from Mmin to

Mmax (Fig. 2). Note that, for negative values of Mmin, the tensile stress at the top of the beam cross-section

should be lower than the tensile strength of the matrix. The successive cross-sectional configurations during

the loading process must satisfy equilibrium and compatibility conditions. Since the problem being

examined is statically indeterminate, the unknown reinforcement reactions Fi (with i ¼ 1; . . . ; n) on the
matrix can be deduced from n kinematic conditions related to the crack opening translations wi at the

different reinforcement levels, as is discussed below. If jFij is equal to FP;i, the force of the ith reinforcement

becomes known, and the crack opening translations are hereafter shown to depend on such a value.

According to the present model, no cycle-dependent degradation of either the interfacial bond or the yield
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Fig. 2. Cycles of bending moment.
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strength is considered and, hence, the ultimate forces FP;i (with i ¼ 1; . . . ; n) are assumed to be constant as
the number of loading cycles increases.

2.2. Monotonic loading

First of all, consider the cracked composite beam subjected to a bending moment M (opening the crack)

monotonically increasing. As is mentioned above, the matrix behaves in a linear elastic manner. Therefore,

linear elastic fracture mechanics can be applied, and the crack opening translation wi at the ith rein-

forcement level is obtained through the superposition principle and the localised compliances due to the

crack (see Appendix A):
wi ¼ wiM þ
Xn

j¼1

wij ¼ kiMM �
Xn

j¼1

kijFj ð1Þ
where wiM and wij are the crack opening translations produced by the bending moment M and by the

generic reaction Fj (assumed to be positive when the jth reinforcement is under tension), respectively; the

localised compliances, kiM and kij, due to the crack represent the ith crack opening translation for M ¼ 1

and that for a unit crack opening force, Fj ¼ 1, acting at fj, respectively.
The kinematic equations to determine the unknown reinforcement reactions can be deduced from

congruence conditions. In other words, because of the rigid-perfectly plastic laws for the reinforcements
and the reinforcement–matrix interface, compatibility requires that wi (i ¼ 1; . . . ; n) be equal to zero until

yielding or slippage of at least one of the n reinforcements is reached (Fig. 1(b) and (c)). Using matrix

formulation, this compatibility condition reads:
fwg ¼ fkMgM � ½k�fF g ¼ f0g ð2Þ

where fwg ¼ fw1; . . . ;wngT is the vector of the crack opening translations at the different reinforcement

levels, and fF g ¼ fF1; . . . ; FngT is the vector of the unknown bridging forces. Further, fkMg is the vector of

the localised compliances related to the bending moment M , whereas ½k� is a symmetric square matrix of
order n, whose generic element ij (ith row, jth column) represents the localised compliance kij. Hence, the

unknown vector fF g can be obtained from Eq. (2):
fF g ¼ ½k��1fkMgM ð3Þ

If the generic (ith) reinforcement yields or slips, the crack opens at the coordinate fi, and wi becomes an

unknown quantity. Therefore, the number of kinematic conditions in Eq. (2) reduces by one, along with the

degree of statical redundancy, Fi being equal to the previously defined maximum bridging force FP;i.
Consequently, the number of equations which can be written (n� 1) continues to be equal to the number of

unknowns (n� 1). At the subsequent yielding or slippage of some reinforcement, the number of kinematic

conditions reduces further along with the number of statically indeterminate forces.
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In order to account for the previously yielded or slipped reinforcements, the compatibility condition of

Eq. (2) can formally be written as follows:
fwg ¼ ½H � fkMgM
�

� ½k� F
� ��

¼ f0g ð4Þ
where ½H � is a diagonal matrix whose generic element ii is given by the Heaviside function HðxÞ with

x ¼ 1� jFij=FP;i (HðxÞ ¼ 1 for x > 0, HðxÞ ¼ 0 for x6 0), and
F
� �

¼ ½H �fF g þ ð½I � � ½H �ÞfFPg ð5Þ
with fFPg ¼ fFP;1; . . . ; FP;ngT, whereas ½I � is the unit matrix of order n. Note that, since the matrix ½H �
becomes singular when at least one reinforcement yields or slips, equation(s) related to Hii ¼ 0 must be

eliminated for solving Eq. (4). Moreover, it should be remarked that, being the matrix ½H � a function of the

solution vector fF g, an iterative procedure is in principle required to solve Eq. (4), but another method is

proposed in the following.

After determining the solution vector fF g from Eq. (4), the vector F
� �

is obtained from Eq. (5), and the

crack opening translations fwg are computed as follows:
fwg ¼ fkMgM � ½k� F
� �

ð6Þ
The relative rotation u due to the crack only (i.e. excluding the elastic deformation of the matrix) of the

two extreme cross-sections of the beam portion in Fig. 1(a) is given by:
u ¼ kMMM � fkMgT F
� �

ð7Þ
where kMM is reported in Eq. (A.13). Eq. (7) is deduced by applying the Castigliano theorem, namely,

u ¼ oU=oM ¼ �oW =oM , where U and W are the variations of, respectively, the strain energy and the total

potential energy of the body due to the introduction of the crack, with the applied loads (external bending

moment and reinforcement reactions) kept constant. The variation W of the total potential energy can be

computed by substituting the expressions (A.7) and (A.8) in Eq. (A.5).

Note that the collapse of the beam under the applied bending moment might occur because of two

possible reasons: (1) unstable fracture of the matrix (when the toughness KIC of the material is attained, that
is, KI ¼ KIC, where the stress intensity factor KI is obtained through the superposition principle:

KI ¼ KIM �
Pn

i¼1 KIi, with KIM and KIi given by Eqs. (A.7) and (A.8), respectively), or (2) crushing of the

matrix (when the normal compressive stress rc, computed through the classical bending theory applied to

the ligament, attains the material strength fc).

2.3. Cyclic loading

Reinforcements under cyclic bending moment might undergo plastic-to-rigid transitions at load rever-

sals. Hence, the compatibility condition of Eq. (4) is modified in order to consider possible non-zero

translations fwg at reversals:
fwg � fw0g ¼ ½H � fkMgðM
�

�M0Þ � ½k� F
� ��

� F 0

� ���
¼ f0g ð8Þ
with F
� �

given by:
F
� �

¼ ½H �fF g þ qð½I � � ½H �ÞfFPg ð9Þ
where q ¼ 1 during loading and q ¼ �1 during unloading. The subscript ‘0’ refers to the values of some
parameters (crack opening translations, bending moment and reinforcement reactions) at the preceding

load reversal. Obviously, the quantities related to the subscript ‘0’ are equal to zero at the beginning of the
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loading process, i.e. at the first loading half-cycle. Once the solution vector fF g is obtained from Eq. (8),

F
� �

can be computed by Eq. (9), and crack displacements can be deduced by Eqs. (6) and (7).

The crack is herein assumed to propagate (under cyclic loading) according to the Paris law

(da=dN ¼ CDKm
I ; Paris and Erdogan, 1963). For convenience, increments of crack length due to fatigue

crack growth are determined after every block of a given number of cycles. Note that the above increments

imply an increase of localised compliances at constant applied loads (i.e. bending moment M and bridging

forces fF g).

2.4. Model implementation

The calculation procedure for the theoretical model here presented is as follows:

1. Compute the localised compliances (see Eqs. (A.11)–(A.13)) for the beam being considered, with a given

value of the initial crack length ninit.
2. At the generic load step k, determine the solution vector F ðkÞ� �

from Eq. (8), by posing either M ¼ Mmax

(during loading) or M ¼ Mmin (during unloading). Calculate the load factor bðkÞ for which the most

highly stressed reinforcement is on the verge of its yielding or slippage:
bð

M

F
�

kÞ ¼ max
16 i6 n

F ðkÞ
i � F ðk�1Þ

i

qFP;i � F ðk�1Þ
i

( )
ð10Þ
where q ¼ 1 during loading and q ¼ �1 during unloading. Note that, when the bðkÞ value computed from

Eq. (10) results to be lower than 1 (that occurs when no reinforcement yields or slips during an unloading

and/or loading half-cycle), the load factor is posed as equal to the unity (see Eqs. (11) and (12) to better

understand such a position).
3. From the load factor bðkÞ, calculate the moment M ðkÞ for which the most highly stressed reinforcement

is on the verge of its yielding or slippage, namely:
ðkÞ ¼ M �M ðk�1Þ

bðkÞ þM ðk�1Þ ð11Þ
where M ¼ Mmax during loading and M ¼ Mmin during unloading.

Note that, at a load step k corresponding to either a loading–unloading reversal or an unloading–

reloading reversal, bðkÞ is equal to 1 and, according to Eq. (11), M ðkÞ results to be equal to either Mmax or

Mmin. Further, at the first load step k after a loading–unloading reversal, M ðk�1Þ is equal to Mmax whereas,

at the first load step k after an unloading–reloading reversal, M ðk�1Þ is equal to Mmin. Then, it can be

remarked that, at the very first load step (i.e. k ¼ 1), M ðk�1Þ ¼ M ð0Þ is equal to 0.

4. Update the reinforcement reactions:
ðkÞ� ¼
F ðkÞ� �

� F ðk�1Þ� �
bðkÞ þ F ðk�1Þ� �

ð12Þ
5. Calculate the rotation uðkÞ according to Eq. (7), by substituting M with M ðkÞ (determined from Eq. (11))

and F
� �

with F
ðkÞ

n o
, where F

ðkÞ
n o

is obtained from Eqs. (9) and (12).

6. If the load step k terminates at a reversal, store the crack opening translations wðkÞ� � �
computed through

Eq. (6), with M ¼ M ðkÞ and F
� �

¼ F
ðkÞ

n o�
.

7. Stop if KI ¼ KIC or if the compressive strength fc is attained in the matrix.

8. Increase the crack length according to the Paris law and update the localised compliances.

9. Return to step No. 2 of the present procedure.
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3. Bending moment vs rotation response

3.1. Shake-down behaviour

The proposed theoretical model can be illustrated by applying it to some simple cases which point out all

its essential features. The overall response of the cracked beam cross-section under cyclic bending is

qualitatively analysed in terms of applied bending moment vs cross-section rotation curves.

Firstly, the case of a single reinforcement is considered. Under certain values of loading and mechanical

and geometrical parameters, the bending moment vs rotation curve for a single cycle might look like that

reported in Fig. 3. The numbers (from 1 to 6) in the graph indicate the sequence of the load steps, while the

upwards and downwards triangular symbols refer to tensile and compressive yielding/slippage of the

reinforcement, respectively. It can be noted that the most significant values of the bending moment in a
loading cycle are: the plastic bending moment MP (equal to M ð1Þ) which produces yielding or slippage in the

reinforcement (subjected to tension) during loading, and the shake-down bending moment MSD (equal to

M ð5Þ) above which yielding or slippage in the reinforcement (subjected to compression) occurs during

unloading (see load step No. 3, represented by the segment 2–3 in Fig. 3).

With reference to the above case, the following regions of behaviour can be observed:

(i) elastic behaviour for 06Mmax < MP;

(ii) elastic shake-down for MP 6Mmax < MSD;
(iii) plastic shake-down for MSD 6Mmax < MF (MF ¼ bending moment of matrix unstable fracture when

KI attains KIC, or bending moment of matrix crushing when the compressive strength fc is attained).

Note that, in the case of plastic shake-down, the bending moment vs rotation curve describes a hysteretic

loop (for the example displayed in Fig. 3, the energy dissipated in each cycle is equal to the area 2–3–4–5–6).

Now let us consider a beam with multiple reinforcements. For the sake of simplicity, three identical

reinforcements are assumed, and the bending moment against rotation curve is shown in Fig. 4. As in the

previous case, the numbers in the graph indicate the sequence of the load steps, while the upwards and
downwards triangular symbols refer to tensile and compressive yielding/slippage of the reinforcements,

respectively. The plastic bending moment MP (equal to M ð1Þ) and the shake-down bending moment MSD

(equal to M ð9Þ) are displayed, and the aforementioned three regions of behaviour can be observed. The

energy dissipated in each cycle is equal to the area of the hysteretic loop 4–5–6–7–8–9–10–11–12.

Some further observations can be made for the case being examined. Each reinforcement is characterised

by a plastic bending moment MP;i and a shake-down bending moment MSD;i: MP;1, MP;2 and MP;3 correspond
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to M ð1Þ, M ð2Þ and M ð3Þ, respectively, whereas MSD;1, MSD;2 and MSD;3 correspond to M ð9Þ, M ð10Þ and M ð11Þ,

respectively (Fig. 4). Obviously, the overall plastic bending moment MP, defining the transition from elastic

behaviour to elastic shake-down, is given by the minimum among the reinforcement plastic bending mo-

ments MP;i, as well as the overall shake-down bending moment MSD, defining the transition from elastic

shake-down to plastic shake-down, is given by the minimum among the reinforcement shake-down bending
moments MSD;i. Intermediate regions of behaviour, where only certain reinforcements undergo yielding/

slippage in tension and/or compression, can be conceived: for instance, if we had MSD;2 < Mmax < MSD;3,

tensile yielding or slippage in the three reinforcements and compressive yielding or slippage in only two

reinforcements would occur.

The observations made for the cases in Figs. 3 and 4 can be extended to the general case of n rein-

forcements. Hence, the following general relationships can be written:
MP;i ¼ M ðkÞ ð13Þ
where k refers to the load step for which the ith reinforcement is on the verge of its yielding or slippage

in tension, and
MSD;i ¼ Mmax �M ðkÞ þMmin ð14Þ
where k now refers to the load step for which the ith reinforcement is on the verge of its yielding or slippage

in compression. Then the overall plastic and shake-down bending moments are given by:
MP ¼ minfMP;ig ð15aÞ

MSD ¼ minfMSD;ig ð15bÞ
It should be noted that the following relationship between MP;i and MSD;i of the generic (ith) rein-

forcement holds:
MSD;i ¼ 2MP;i þMmin ð16Þ
In the region of plastic shake-down behaviour (MSD 6Mmax < MF), the energy dissipated per cycle can be

calculated as follows:
work

cycle
¼

Xse
k¼sb

1

2
M ðkþ1Þ�

þM ðkÞ� uðkþ1Þ�
� uðkÞ� ð17Þ
where sb ¼ load step at the beginning of the cycle, and se ¼ load step at the end of the cycle (e.g. sb ¼ 4 and

se ¼ 12 for the cycle in Fig. 4).
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It might be worth pointing out that, by employing the proposed model and assuming a non-propagating

crack in the composite beam being considered, the cyclic flexural behaviour described above in terms of

bending moment against beam cross-section rotation is reminiscent of that predicted through a classical

constitutive theory for cyclic plasticity with a linear-piecewise kinematic hardening rule (e.g. see Chaboche,
1986, for a review, and Masing, 1926, for his early parallel sub-element model). As a consequence, no

ratchetting effect (accumulated plastic deformations) can be accounted for by the present model.

According to the dimensional analysis and within the range of validity of the model assumptions (see

Carpinteri Al and Massab�o, 1997, for monotonic loading), the bending moment vs rotation relationship,M
vs u (see Eq. (7)), can be written in the following dimensionless form provided that the geometrical

parameters t=b, n and fi (i ¼ 1; . . . ; n) are fixed, the ultimate forces FP;i (i ¼ 1; . . . ; n) are identical to one

another and failure is supposed to be caused by unstable fracture of the matrix:
eM ¼ f u;NP; eE� �
ð18Þ
where
eM ¼ M
KICb2:5

ð19aÞ

NP ¼
Pn

i¼1 FPi
KICb0:5t

ð19bÞ

eE ¼ Eb0:5

KIC
ð19cÞ
Moreover, in the last paper mentioned above, it has been shown that the dimensionless bending moment vs
normalised rotation relationship, eM vs ~u (with ~u ¼ ueE), is solely controlled by the dimensionless

parameter NP (called brittleness number after Carpinteri Al, 1984), namely, the cyclic flexural responses of

beams having different values of the mechanical and geometrical parameters are physically similar to one

another if the number NP is the same.

3.2. Fatigue crack growth

Now let us consider the crack propagation according to the Paris law. The case of three identical
reinforcements, analogous to the case in Fig. 4, is examined. Fig. 5 shows bending moment vs rotation

curves at different numbers of loading cycles (the first cycle, the generic N th cycle, and the final Nf th cycle).

It can be remarked that, as the crack propagates, the values of the local compliances (see Eqs. (A.11)–

(A.13)) increase and, hence, the slopes of the linear segments in the diagram M vs u decrease. Further, by

increasing n, the value of the shake-down bending moment MSD (see M ð1Þ
SD, M

ðNÞ
SD and M

ðNf Þ
SD in Fig. 5) de-

creases. Consequently, the energy dissipated at every hysteretic loop varies as the number of loading cycles

increases. Finally, the fatigue collapse of the beam can occur due to either matrix unstable fracture, when KI

attains KIC, or matrix crushing, when rc attains fc.
4. Numerical examples

Consider a reinforced concrete beam cross-section with t ¼ 0:2 m, b ¼ 0:3 m, submitted to pulsating

cyclic bending (Mmin ¼ 0). The concrete mechanical properties E and KIC are assumed to be equal to 32.1
GPa and 1.75 MPa

ffiffiffiffi
m

p
, respectively. Further, in the present section, the concrete compressive strength is
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Fig. 5. Typical bending moment vs rotation hysteretic loops at different numbers of loading cycles, in the case of three reinforcements.
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assumed to be as high as to avoid crushing failure (that is, failure is supposed to be caused by unstable

fracture of the matrix in the following examples).

Firstly, let us examine the case of a single reinforcement at f1 ¼ 0:1, with an ultimate force equal to
10,053 N (e.g. corresponding to a steel bar of diameter 8 mm and yield strength equal to 200 MPa), so that

the brittleness number NP is equal to about 0.05. By varying, for instance, the reinforcement percentage,

different values of NP could be obtained: three possible values, considered in the following examples, are

0.02, 0.05 and 0.10.

Fig. 6 shows the variation of the dimensionless (see Eq. (19a)) shake-down ( eMSD, with eMSD ¼ 2 eMP foreMmin ¼ 0, see Eq. (16)) and unstable fracture ( eMF) bending moments against the relative crack depth n, for
the three above values of NP. It can be remarked that both such characteristic bending moments decrease
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with increasing n but, depending on the values of n and NP, eMF can be higher or lower than eMSD. Clearly,

unstable fracture tends to precede elastic and/or plastic shake-down as the brittleness number NP increases.
By selecting a dimensionless maximum bending moment eMmax and an initial relative crack depth ninit, the

three regions of behaviour previously described (elastic behaviour, elastic shake-down and plastic shake-

down) can be encountered as the crack undertakes fatigue propagation (i.e. n increases). For instance, by

assuming eMmax ¼ 0:075, ninit ¼ 0:15 and NP ¼ 0:05 (Fig. 7), we encounter an elastic behaviour for

0:156 n < 0:24, an elastic shake-down for 0:246 n < 0:47, and a plastic shake-down for 0:476 n up to

unstable fracture failure at n ¼ 0:55.
Taking advantage of Fig. 7, two significant loading cases ( eMmax equal to 0.10 and 0.15, respectively) are

considered for the cracked beam with NP ¼ 0:05 and ninit ¼ 0:15. Assuming typical values of the Paris law
parameters for plain concrete (C ¼ 7:71� 10�25 and m ¼ 3:12 for crack growth rate and stress–intensity

range expressed in m/cycle and Nm�3=2, respectively; Baluch et al., 1987), dimensionless bending moment eM
against normalised rotation ~u (with ~u ¼ ueE, and eE given by Eq. (19c)) cyclic curves up to fatigue failure

can be determined through the proposed theoretical model (Fig. 8). Crack propagation has been calculated

every 100 loading cycles for computational efficiency, whereas the results in Figs. 8 and 9 are plotted for

some numbers of loading cycles only. It can be observed that, for eMmax ¼ 0:15 (Fig. 8(a)), the crack

propagates in the elastic shake-down region (without energy dissipation in hysteretic loops) up to unstable

fracture after Nf ¼ 2:8� 103 cycles (see star symbol, which corresponds to n ¼ 0:23 as also obtained from
Fig. 7). On the other hand, for eMmax ¼ 0:10 (Fig. 8(b)), a transition from elastic shake-down to plastic

shake-down occurs, with energy dissipation in hysteretic loops up to unstable fracture after Nf ¼ 23:8� 103

cycles (see star star symbol, which corresponds to n ¼ 0:42 as also obtained from Fig. 7).

Now consider the case of three identical reinforcements located at f1, f2 and f3 equal to 0.06, 0.10 and

0.14, respectively, so that their centroid is at f ¼ 0:10 (i.e. at the same level of the single reinforcement

examined above). Let us assume that eMmax be equal to 0.10, and the geometrical and mechanical para-

meters chosen yield NP ¼ 0:05. Fig. 9 shows dimensionless bending moment vs normalised rotation cyclic

curves up to fatigue failure after Nf ¼ 62:5� 103 cycles (see star symbol, which corresponds to n ¼ 0:42).
Juxtaposing Figs. 8(b) and 9, it can be noted that, although failure occurs at the same relative crack depth

(n ¼ 0:42) in both cases, the presence of multiple reinforcements causes plastic shake-down from the very

beginning of the crack growth process, while such a region of behaviour is preceded by a remarkably large



Fig. 8. Dimensionless bending moment vs normalised rotation curves, for eMmin ¼ 0 and a single-reinforcement beam with NP ¼ 0:05

[the numbers near the peaks of the cyclic curves indicate the relative crack depth (n)]: (a) eMmax ¼ 0:15, curves plotted at the first cycle

(N ¼ 1), after every 300 cycles and at the final cycle (Nf ¼ 2:8� 103); (b) eMmax ¼ 0:10, curves plotted at the first cycle (N ¼ 1), after

every 3000 cycles and at the final cycle (Nf ¼ 23:8� 103).
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zone of elastic shake-down in the case of a single reinforcement, the values of the other parameters being

equal to those of the previous case. In addition, the fatigue life of the three-reinforcement beam is greater

(by a factor equal to about three) than that of the single-reinforcement beam.

To summarise, the comparison between the case of a single reinforcement and that of three reinforce-

ments (NP ¼ 0:05 for both cases) is shown in Fig. 10 in terms of the dimensionless dissipated energy

(dissipated energy multiplied by E=ðKICbÞ2) per hysteretic loop against the number of loading cycles. The

early stage of elastic shake-down (N less than about 20,000 loading cycles), where dissipated energy is null,

can be recognised for the case of a single reinforcement. Further, it can be remarked that the total
dimensionless dissipated energy computed for a single reinforcement and for three reinforcements is

respectively equal to about 49 and 492. Therefore, according to the present model, by distributing the same

area of reinforcement among a multiple number of elements (three elements in the example being con-

sidered), the energy dissipation capacity of the beam as well as its fatigue life (see also the final part of the

previous paragraph) significantly increase.



Fig. 9. Dimensionless bending moment vs normalised rotation curves, for eMmin ¼ 0, eMmax ¼ 0:10 and a three-reinforcement beam with

NP ¼ 0:05, plotted at the first cycle (N ¼ 1), after every 8000 cycles and at the final cycle (Nf ¼ 62:5� 103) [the numbers near the peaks

of the cyclic curves indicate the relative crack depth (n)].

Fig. 10. Dimensionless dissipated energy (work/cycle multiplied by E=ðKICbÞ2) per hysteretic loop vs number of loading cycles, for both

a single-reinforcement and a three-reinforcement beam ð eMmin ¼ 0; eMmax ¼ 0:10;NP ¼ 0:05Þ.
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5. Conclusions

A theoretical model based on fracture mechanics concepts is herein proposed to analyse the hysteretic

behaviour of a brittle-matrix composite beam subjected to cyclic bending. Accordingly, a cracked beam

with an elastic matrix and reinforcements acting as rigid-perfectly plastic bridging elements has been

examined. The simple assumptions of the model allow us to describe typical cyclic phenomena, including

elastic shake-down and plastic shake-down, and to predict fatigue life.

The capabilities of the model are presented in terms of applied bending moment against beam cross-
section rotation, by pointing out that the response of the composite beam is dependent on the so-called

brittleness number. The influence of such a parameter on the elastic behaviour, elastic shake-down and
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plastic shake-down has been discussed by analysing some numerical examples. Furthermore, the energy

dissipation in the hysteretic loops of plastic shake-down is shown to be influenced by the number of

reinforcement elements among which a certain reinforcement area is distributed, the values of the other

parameters being the same. For instance, if three reinforcements are considered instead of a single rein-
forcement, the total dissipated energy along with the fatigue life significantly increase.
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Appendix A

Let us consider a general linear-elastic plane stress problem for a cracked body. The body contains a

through-thickness crack of length a, and is subjected to n generalised point loads Fi, i ¼ 1; . . . ; n. The
generic point-load translation di can be expressed by the following relationship:
di ¼
Xn

j¼1

kijFj ðA:1Þ
where kij are the localised compliances.

For an increment of the crack length da, a variation of the total potential energy dW of the body occurs.

Applying the Clapeyron theorem, such a variation can be expressed as follows:
dW ¼ �
Xn

i¼1

Xn

j¼1

1

2
FiFj dkij ðA:2Þ
where dkij are the increments of the localised compliances due to crack extension da. Also, according to the

Irwin relationship, the variation of the total potential energy dW can be expressed by:
dW ¼ �ðKI1 þ � � � þ KInÞ2

E
tda ¼ �

Xn

i¼1

Xn

j¼1

KIiKIj

E
tda ðA:3Þ
where the generic KIi is the stress intensity factor at the crack tip due to the generalised force Fi.
Integration of Eqs. (A.2) and (A.3) yields two expressions for the variation of the total potential energy

due to the presence of the crack with length a:
W ¼ �
Xn

i¼1

Xn

j¼1

1

2
FiFjkij ðA:4Þ

W ¼ �
Xn

i¼1

Xn

j¼1

Z a

0

KIiKIj

E
tda0 ðA:5Þ
Juxtaposing Eqs. (A.4) and (A.5), the generic localised compliance kij can be defined as:
kij ¼
2

E

Z a

0

KIiKIj

FiFj
tda0 ðA:6Þ
For the beam element in Fig. 1, the localised compliances can be calculated from Eq. (A.6) by considering

the stress intensity factors for the applied loads, namely for the bending moment M and the reinforcement
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reactions Fi, i ¼ 1; . . . ; n. The expressions here adopted for the stress intensity factors are taken from (Tada

et al., 1985), i.e.
KIM ¼ M
b1:5t

YMðnÞ ðA:7Þ
KIi ¼
Fi
b0:5t

YFðn; fiÞ ðA:8Þ
where
YMðnÞ ¼
6 1:99n0:5 � 2:47n1:5 þ 12:97n2:5 � 23:17n3:5 þ 24:8n4:5
� �

n6 0:6
3:99

ð1�nÞ1:5 n > 0:6

(
ðA:9Þ
and
YFðn; fiÞ ¼
2ffiffiffiffiffiffi
pn

p 1

ð1� nÞ1:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fi

n

� �2
r Gðn; fiÞ for nP fi

Gðn; fiÞ ¼ g1ðnÞ þ g2ðnÞ
fi
n
þ g3ðnÞ

fi
n

� 	2

þ g4ðnÞ
fi
n

� 	3

g1ðnÞ ¼ 0:46þ 3:06nþ 0:84ð1� nÞ5 þ 0:66n2ð1� nÞ2

g2ðnÞ ¼ �3:52n2

g3ðnÞ ¼ 6:17� 28:22nþ 34:54n2 � 14:39n3 � ð1� nÞ1:5 � 5:88ð1� nÞ5 � 2:64n2ð1� nÞ2

g4ðnÞ ¼ �6:63þ 25:16n� 31:04n2 þ 14:41n3 þ 2ð1� nÞ1:5 þ 5:04ð1� nÞ5 þ 1:98n2ð1� nÞ2

ðA:10Þ
By inserting Eqs. (A.7)–(A.10) in Eq. (A.6), the localised compliances kij, kiM and kMM can be obtained:
kij ¼ kji ¼
2

tE

Z n

maxffi;fjg
YF n0; fi
� �

YF n0; fj
� �

dn0 ðA:11Þ
kiM ¼ 2

btE

Z n

fi

YF n0; fi
� �

YMðn0Þdn0 ðA:12Þ
kMM ¼ 2

b2tE

Z n

0

Y 2
Mðn

0Þdn0 ðA:13Þ
Details on how to overcome the singularities in the integrals (A.11) and (A.12) are given in (Carpinteri Al
and Massab�o, 1997).
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